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COMPR,ESSIBILITY CORBECTIONS TO CLOSURE 
APPROXIMATIONS FOR TURBULENT FLOW SIMULATIONS 

Lawrence D. Cloutman 

Abstract 

We summarize some modifications to the usual closure approximations for statisti- 
cal models of turbulence that are necessary for use with compressible fluids at all Mach 
numbers. We concentrate here on the gradient-flu approximation for the turbulent 
heat flux, on the buoyancy production of turbulence kinetic energy, and on a modifi- 
cation of the Smagorinsky model to include buoyancy. In all cases, there are pressure 
gradient terms that do not appear in the incompressible models and are usually omit- 
ted in compressible-flow models. Omission of these terms allows unphysical rates of 
entropy change. 
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1 Introduction 

A major source of uncertainty in most turbulence models is the use of the gradient-flux (or 
gradient-transport) approximation to calculate the turbulent fluxes of chemical species and 
heat. That is, 

where p =< p > is the averaged density, pt is the eddy viscosity, and Scf is the turbulent 
Schmidt or Prandtl number for the quantity f .  Angled brackets denote the averaging oper- 
ator. We take f to be one of the scalar functions that describe fluid flow, such as internal 
energy I ,  temperature T ,  or a species mass fraction Y,. Here a prime indicates a turbulent 
fluctuation defined by f' = f - 7, and a bar indicates a mass-weighted average: f = (p f ) /P .  

At this level of approximation, the Reynolds stress usually'is modeled by a slightly more 
complex gradient-flux approximation, 

(2) 
2 
3 pm = -T,+-plCU, 

where K: is the turbulence kinetic energy density, u is the velocity, and U is the unit tensor. 
This form has the important properties that its trace is twice the turbulence kinetic energy 
density, and it preserves the tensor invariance of the mean flow momentum equation. How- 
ever, it is well-known that the gradient-flux approximation is often seriously in error and 
even can have the wrong sign (for example, [l, 2, 3, 41). So far, satisfactory closure approx- 
imations for this counter-gradient phenomenon have not been reported. A negative eddy 
viscosity was an early proposal [5 ] .  However, this proposal would make the mathematical 
initial-boundary problem for the mean flow ill-posed, so a different approach must be used. 

A more meaningful approach is to introduce terms in addition to the gradient-diffusion 
term. One of the main goals of this report is to propose just such a counter-gradient term 
for the turbulent heat flux, which also has implications for the creation of K: by buoyancy. 
By counter-gradient, we don't necessarily mean the net flux has the opposite sign from the 
regular gradient term, just that there are one or more terms that oppose it. In such a case, 
the gradient term alone does not accurately represent the net turbulent flux. 

In spite of considerable effort by Deardorff [3, 41 and unpublished work by myself, 
attempts to derive an improved closure model from the governing equations have not provided 
satisfactory results. For now, we shall abandon this approach and instead use a kinematic 
model of turbulent mixing to derive the most basic of the counter-gradient terms. The 
studies based on the governing equations suggest the presence of additional terms, but those 
are beyond the scope of this report. 

The original governing equations are presented in Section 2. The averaged equations 
and turbulent flux transport equations are presented in Section 3. Section 4 presents the 
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kinematic model that shows the existence and form of a very fundamental counter-gradient 
term. Section 5 discusses the generalized adiabatic exponents and how to evaluate them. 
Section 6 discusses the creation of turbulence kinetic energy by buoyancy. Section 7 provides 
a modification to the Smagorinsky model to account for buoyancy. Section 8 contains the 
conclusions. 

2 Governing Equations 

We assume that the details of turbulent flows can be described to a sufficiently high degree of 
accuracy by the multicomponent Navier-Stokes equations. We assume the fluid is a mixture 
of species described by the single velocity (mass weighted) representation. 

Mass conservation is expressed by the continuity equation for each species a: 

where pa is the density of species a, t is time, and R, is the rate at which species a is 
created by chemical reactions. The “exact” diffusional mass fluxes must be computed from 
a complicated theory (for example, [6, 7, 8, 9, 10, 111) but it will suffice for our present 
purpose to consider Fick’s law, 

where p is the total density, Y, = p,/p is the mass fraction, and D is the diffusivity. We 
assume D is independent of species. Equation 3 may be summed over species to obtain the 
total continuity equation 

dp 
- ai! + v * (pu) = 0. 

By definition, the diffusional and reactive terms are constrained to sum to zero. 
The momentum equation is 

( 5 )  

where F, is the external body force on species a, which we will take to be the gravitational 
acceleration g, P is the pressure, and T is the stress tensor 

T = p [VU +  VU)^] + p1(V U )  U 

1 2 
= p v u  + (VU)* - -(V * u)  u + pb(v * u )  u. [ 3 (7) 

Here U is the unit tensor, p is the coefficient of viscosity, p1 is the second coefficient of 
viscosity, and p b  is the bulk viscosity. We normally assume ,u1 = -2,u/3 (that is, zero bulk 
viscosity). 
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For reasons discussed elsewhere [12] , we choose to express energy conservation in 
terms of the specific thermal internal energy I :  

where q is the diffusional heat flux, and H, is the heat of formation of species a. The heat 
flux is another complicated function, and we choose to consider just the sum of Fourier’s law 
and enthalpy diffusion: 

q = -KVT + haJa, (9) 
a 

where K is the thermal conductivity, and ha is the enthalpy of species a. We emphasize 
that whatever model, turbulent or laminar, is used to evaluate the species fluxes, the same 
fluxes must be used in both the species diffusion and the enthalpy diffusion term. Failure to 
do so will result in a violation of the second law of thermodynamics. 

The thermal equation of state is assumed to be the sum of partial pressures for a 
mixture of ideal gases: 

p = RpaTIMff, (10) 
ff 

where R is the universal gas constant, and M ,  is the molecular weight of species a. For 
present purposes, the caloric equation of state is assumed to be 

where I ,  is the ionic species specific thermal internal energy. However, for combustion 
applications, the I,(T) must include rotational, vibrational, and excited states. An example 
is provided by the JANAF tables [13, 14, 151. Other applications may require still other 
constitutive relations that are beyond the scope of the present study. 

3 The General Reynolds Averaged Equations 

The first step in constructing a turbulence model is to select an averaging operator appropri- 
ate to the problem at hand. The choice of averaging operator defines the mean flow as some 
particular function of the total flow. The turbulent component is the difference between the 
total flow and the mean flow. We use the ensemble average in this study. 

We denote the averaging operator by angular brackets or by a tilde above certain 
variables, for example 

(p(r7 t ) )  = P(r7 t).  (12) 
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The turbulent component p'(r, t )  
p or P ,  the average is mass-weighted, denoted by an overbar: 

p- p has a zero average value. If f is any variable except 

(dr,  t )  f(r7 t ) )  = P(r7 t )  7(r, t ) .  (13) 

Let us begin by writing down the equations for the mean flow. Averaging equations 3, 
5, 6, and 8, we obtain 1121 

(14) 

(15) 

ap Ya 
- + V -  at [ p Y , i i + p q + ( J , ) ]  =(Ra), 

8P 
- + v .  (pa)  = 0, at 

io - + V * [ pii i i  + pm - (T)] = C(paFa) - V P  = j 5 ~  - V P ,  
at a 

and 

= Ha(Ra) - (PV U) + (T : VU) + (Fa  Ja) . (17) 
a a 

The last term in equation 17 vanishes in the special case of Fa = g. We shall assume 
gravity is the only body force in the remainder of this report. Note that up to this point 
the equations are exact. However, we now have a serious closure problem because there are 
several unknown turbulence correlations that appear in these equations. 

In this report, we shall be concerned primarily with u'u', I'd, and YAu'. The trans- 
port equations for the two covariances and the turbulence kinetic energy (half the trace of 
u") are 

at 

-- - 

- ap YAU' + v * [ p a w  + pY;u'u'] + p m  - VY, + pw. vii = (pYag) - p a g  

- (YaVP) + YaVF + (uR,) - ii(Ra) - (U V * J a )  + iiV * ( J a )  + (YaV * T) - F a V  * (T) , (18) 

+ v . p i i m + v . p I ' u ' u ' +  pI" .vu+ pulul.07 ap I" 
at 

= (pig) - p f g - (IVP) + TvF - (UP v . U) + ~ ( P V  . U) + (I v . T) - f v - (T) 

+E [Ha ((Rau) - (Ra)U) - (UV - (haJa)) + u v  * (haJa)] 7 

+(u V * KVT) - T i  V (K VT) + (U (T : VU)) - ti (T : VU) 

(19) 
a 

and ap K: -+v-  [ p m +  0.5p(u'.u')u'] at 
= ( p g - u ) - p g - t i  - [ ( U . V P ) - E . V F ]  + [(us 

- + pu'u' : vu 
(V * T)) - ii * (V - (T))] . (20) 
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A Kinernat ic Closure Model 

In principle, the most accurate way to calculate the second order correlations such as 
should be to solve the transport equation 18. However, the problem of closure again requires 
that several new correlations have to be modeled. Furthermore, the number of component 
equations for the YLu: is the number of species times the number of dimensions in the 
calculations. For example, a three-dimensional calculation with 12 species would require 
carrying 36 transport equations and associated memory arrays just for the species-velocity 
correlations. Therefore, there is a potentially huge savings in computer memory requirements 
and computational effort in using an algebraic closure. 

Neither Deardorff nor I have had a clear success in using the covariance transport 
equations to derive an algebraic closure model for the heat and mass fluxes. The biggest 
impediment is the need to introduce other ad hoc closure assumptions at some point. How- 
ever, simple kinematic models include pressure gradient terms in a natural way. We discuss 
three such models. The first two are merely suggestive for our present purposes, but are 
nonetheless instructive and provide support for the final closure approximations. The third 
model provides a more detailed and complete “derivation” of the closure for the case of a 
multicomponent fluid in an arbitrary flow. 

- 

4.1 Stellar Convection Zones 

The simplest example of a gradient-flux model with a counter-gradient term is found in 
the most elementary theory of convection that has been used widely in models of stellar 
atmospheres and interiors for several decades. Stellar models are usually one-dimensional, 
and the mean flow equations are found by averaging the Navier-Stokes equations in spherical 
coordinates over surfaces of constant radius. Convective instability occurs in a chemically 
homogeneous stratified fluid whenever the superadiabatic excess 

This is the well-known Schwarzschild criterion. The subscript “ad” denotes the adiabatic 
gradient. Kaniel and Kovetz [16] show that the Schwarzschild criterion for convective insta- 
bility in a star may be written in terms of the sign of the entropy gradient, and we note that 
AVT is proportional to the entropy gradient for a chemically homogeneous ideal gas. 

In the usual one-dimensional stellar interior and atmosphere models, only the radial 
component of the turbulent heat flux I‘u‘ is nonzero, and it is usually estimated from the 
standard mixing length theory (SMLT) [17, 181. The SMLT long has been the standard 
model of turbulent convection in astrophysics, and its shortcomings are well known. Its 

- 
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foundation is not a dynamical calculation based on the equations of fluid motion, but rather 
on a “cartoon derivation” in which “turbulent blobs” are assumed to be created, move due 
to buoyancy forces, and decay within a hydrostatic environment. The SMLT is not really 
a theory but is more accurately described as a kinematic model of convection. The only 
dynamics in the SMLT is the estimation of the buoyancy forces on the assumed “blobs.” 

The heat flux in the SMLT may be written as 

where A s M L T  is an empirically determined constant, (u)SMLT is a turbulent velocity, H p  is 
the pressure scale height, and Cp is the specific heat at constant pressure. The first four 
factors are equivalent to a kinematic eddy viscosity divided by a turbulent Prandtl number. 
Since the convective velocity (‘U)SMLT is proportional to lAVTI1l2, the flux is often written 
in a form that explicitly shows a AVT dependence. The importance of equation 22, 
however, is that the turbulent heat flux is proportional to the superadiabatic excess gradient 
AVT rather than VT. It is easy to see why this is so: if the temperature gradient is the 
adiabatic gradient, adiabatically moving a blob of fluid up or down in pressure equilibrium 
will not produce a temperature difference between the blob and the ambient medium, hence 
there is no net convective transfer of heat by an ensemble of upward- and downward-moving 
blobs. If the adiabatic gradient is less steep (less negative since T increases outward) than 
the actual gradient, an adiabatically rising blob cools more slowly than its surroundings as 
it rises, thereby transporting an amount of thermal energy proportional to the difference 
between the blob temperature and the ambient temperature at the level where the blob 
merges with the ambient medium. Note that since AVT is proportional to the entropy 
gradient, neglect of the adiabatic term in the turbulent heat flux closure, even for low Mach 
number “incompressible” flows, can lead to serious errors, including the incorrect sign for the 
heat and entropy fluxes. That is, a simulation can violate the second law of thermodynamics 
if the adiabatic term is not included. 

The conventional wisdom in other areas of fluid dynamics is that counter-gradient 
effects are mostly due to pressure gradients. This is consistent with the case of stars in 
hydrostatic equilibrium discussed above, since we can write 

-312 

where r2 is the second adiabatic exponent [19]. It reduces to y for gases in the absence of 
radiation pressure. We propose generalizing equation 22 to 
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for multidimensional simulations, where C, is the specific heat at constant volume. 

notes that it is density, not temperature, that is the fundamental determining factor for 
buoyancy forces, and therefore for the stability of the fluid. The more general condition for 
convective instability is then 

The situation becomes more complex in chemically inhomogeneous systems. Ledoux [20] 

T d M  
< 0, (25) 

where M is the mean molecular weight. We shall incorporate this modification into the final 
model in section 4.3. 

4.2 A Meteorological Model 

Deardorff [3,4] has studied the counter-gradient flux problem in the context of meteorological 
flows. Instead of using internal energy, he expresses energy conservation in terms of the 
potential temperature OT defined by 

where PO is the pressure of an arbitrary reference state, often the initial condition of the fluid 
element under consideration. We assume an ideal gas with constant y and C,. In that case, 
OT is constant for a Lagrangian fluid element if the flow is purely adiabatic, and the energy 
equation reduces to de,/& = 0. Even for nonadiabatic flows, this choice of variables formally 
removes the PdV work term from the energy equation, which can be seen by considering 
equation 8 rewritten in Lagrangian form: 

p- d l  = - P V * u + S I ,  
d t  

where SI is shorthand for all of the source and diffusion terms. Then the potential temper- 
ature equation is 

The averaged potential temperature equation is 

where T~ is an empirical constant and 2 is the unit vector in the vertical direction. The 
gradient-flux term with T~ = 0 assumes the validity of equation 1 for f = ST. Since 00, = 

( 6 ~  AVT)/T, the pressure gradient term in equation 24 is already included in the ordinary 
gradient-flux approximation for O&u’ with yc = 0. Deardorff [2] has presented a similar 

- 
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derivation that , strictly speaking, is limited to planar atmospheres in hydrostatic equilibrium 
with low-Mach-number flows. 

This result is a strong argument that equation 24 provides a zeroth order approxima- 
tion to the counter-gradient term, at least for gases for which the polytropic law equation 26 
describes adiabatic changes. However, Deardorff points out that atmospheric measurements 
show the need to include the additional counter-gradient term in the turbulent heat flux in 
equation 29 with ^/c M 6.5 x K/cm. He published two attempts to theoretically explain 
this term by looking at the turbulence transport equations. The first attempt looked at the 
transport equation for the potential temperature variance [3]. He showed that a combina- 
tion of the triple correlation and decay terms can produce this additional counter-gradient 
effect. Deardorff also did a later analysis [4] using the transport equation for the turbulent 
potential temperature flux and found a rather different result. These arguments, however, 
are not compelling and further research is needed. 

4.3 A Kinematic Model of Mixing 

Let us consider a simple kinematic model of turbulent mixing much in the spirit of that 
usually used to derive the Schwarzschild and Ledoux criteria. The pressuregradient term 
will arise naturally. Also, it will be clear that the counter-gradient term is appropriate for 
all flows, not just stratified atmospheres. Figure 1 shows two Lagrangian control volumes 
of fluid, labelled 1 and 2. We assume that fluid elements of equal mass, indicated by the 
circles, exchange positions. The exchange is assumed to be adiabatic and reversible (isen- 
tropic), without species diffusion, and with the fluid elements remaining intact until after the 
exchange. Then the elements are allowed to “d i~~olve’~  and mix with the rest of the control 
volume. The pressure in each control volume is unchanged by this process, but the volume is 
allowed to change. We now consider the changes made to the contents of the control volumes 
due to this exchange process. This model is appropriate for use with Schumann’s averaging 
procedure [21] since the control volumes may be identified with computational zones. 

We shall assume the following for the equations of state in a multicomponent fluid 
mixture. First, there are no chemical changes. Second, the total pressure is the sum of the 
partial pressures of the species. Third, the specific internal energy of the mixture is given by 
the mass-weighted average of the species internal energies. Unless otherwise specified, the 
partial pressures may or may not be for an ideal gas, and the species internal energies may 
be nonlinear functions of temperature and density that are thermodynamically consistent 
with the thermal equation of state. 
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Figure 1. Control volumes for the kinematic model. 

We assume the interchange of blobs of volume dV,  of equal mass 

dm = p1 dV1 = p2 dV2. 

Then for each species a we have a mass balance in control volume 1 

where pal is the species density after the exchange. Since the total mass of volume 1 is 

Ml vlPl = Vlpl, the change in mass fraction of species Q is 

This result is consistent with the usual Fick's law closure for the turbulent mass fluxes, 

where Sct is the turbulent Schmidt number. This relation is independent of the equations of 
state and of the thermodynamic process used in the exchange. 

Next consider a stability test assuming the blobs remain intact immediately after the 
exchange. This implicitly assumes that the pressure equilibration occurs rapidly compared 
to chemical mixing or heat transfer. We use an asterisk to denote the conditions within 
the blob after pressure equilibration at  the new location, but before it mixes with its new 
surroundings. Then for the mixture that moved from volume 2 to volume 1, 
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where, following Chandrasekhar [19], we introduce the generalized adiabatic exponent rl 
(dln P / d l n ~ ) ~ d ,  which can be different for each mixture. We assume that the fractional 
changes in pressure and density are much less than unity. Similarly, we have for each fluid 
species 

p,*2 - pa2 PL2 - Pa2 
= L , a  

pa2 Pa2 
(35) 

We do not assume that the F l , a  are equal. For an ideal gas, rl = y, the usual ratio of specific 
heats. The next section discusses how to evaluate this parameter for any equation of state. 

We assume the total pressure is equal to the sum of partial pressures, for example, 

p2 = pa2. 
a 

As long as the blob remains intact, all species change their density by the same factor, so 
pL2/pa2 = p;/p2 and Y12 = Ya2. In general, the pressure fractions will change inside the blob 
during the adiabatic expansion or compression due to the exchange. However, the constraint 

a a 

will be satisfied. Noting that all species in the blob undergo the same fractional density 
change, solving equation 35 for P,*2, and substituting into equation 37, we obtain the frac- 
tional density change for the blob dV2: 

This equations tells us the new blob density p;. 

Stability can be determined by comparing the new blob density to the density of its 
surroundings and the direction of the local pressure gradient. If (P2 - PI)(p1 - p;) > 0, the 
blob gets further accelerated by buoyancy forces and the fluid is unstable. Otherwise, there 
is a restoring force on the blob. We note that (P2 - Pl)(p1 - p;) a -VP - [vp - (vp)ad], 
so we recover the Ledoux criterion, equation 25. A common error in the literature is to 
test stability by considering the sign of V P  - Vp, thereby omitting the adiabatic gradient 
term. However, it is clear that this simplified form is incomplete and therefore incorrect 
when applied to compressible fluids regardless of the Mach number. 

Now consider the heat flux due to element exchange. The internal energy in volume 1 
is given by 

'The generalized adiabatic exponents are not constant in general but are weak functions of the thermo- 
dynamic state. For our purposes, we can evaluate rl from the initial state of each fluid element, which is 
the same level of approximation as the denominators in equation 34. 
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Upon an exchange of blobs, the mixture energy balance is 

V l ~ l I ( k 1 ,  pl) = Vlp~I(yal ,  TI) - d m x  [YalIa(T1) - Yada(T;)].  (40) 
a 

Here we have assumed that the blob from dV2 has all species at the same final temperature 
T; at the end of the exchange, but before its dissolution. If we note that blob mass fractions 
are unchanged by the exchange and divide by MI, this becomes 

(41) 
dm 
Ml = I(Ya1, TI) - - [I(%1, - I ( K 2 ,  T;)] * 

The new internal energy I ( f '1)  can be inverted to find the new temperature f '1  once we 
evaluate the Ia(Tl). 

(d lnP /d lnT)d .  Assuming we have r2 for the mixture in control volume 2, we allow dV2 to 
undergo an adiabatic change from P2 to PI: 

We compute T,* from the generalized adiabatic exponent r2 defined by r2/(r2 - 1) 

where Cv,2 3 (d I /dT) ,  is the specific heat at  constant volume. Note that the second 
equality is valid, strictly speaking, only for d1 = C, dT, which neglects ( 6 ' I l a p ) ~  d p  for 
non-ideal caloric equations of state. Solving equation 42 for I(Ya2, T l )  and substituting into 
equation 41, 

Noting that the internal energy and pressure differences are proportional to the respective 
gradients, we obtain our new closure approximation, 

which may be compared to equation 24. We have now removed the assumptions of ideal 
gases and chemical homogeneity. 

5 The Generalized Adiabatic Exponents 

Chandrasekhar [19] (pages 56 8 discusses adiabatic processes for general equations of state 
by introducing the generalized adiabatic exponents I'l, r2, and r3 defined by 
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For the purposes of this report, we shall assume that the adiabatic processes are also isen- 
tropic. It is easy to show that the adiabatic exponents are constrained by 

The new turbulence model requires both rl and r2. For ideal gases, these are simply 
the usual ratio of specific heats, y. For radiation in the gray one-temperature approximation, 
ri = 4/3. For other equations of state, the evaluation is somewhat more complex. Sometimes 
these exponents are provided as part of equation of state tables, such as with the OPAL 
equation of state rogers:01, but in most cases the user has to provide them. We shall now 
show how to evaluate these quantities within a computational fluid dynamics program with 
any thermodynamically consistent equation of state. 

We shall find it convenient to introduce the usual specific volume, v = l /p  and to 
follow the nomenclature and analysis of Sears [23]. Let us assume that we have been given 
the thermal and caloric equations of state P ( v , T )  and I ( v , T ) .  We begin by defining the 
isothermal coefficient of expansion 

P = 1 (*) (= 1 Ideal gas) v dT 

and the isothermal compressibility 

1 dv 1 "=-;(P)~ ( = p  Idealgas). 

We shall also need to make use of the thermodynamic consistency condition 

( g ) T + P = T ( E )  =-, TP 
tG v 

(49) 

which is derived on page 148 of Sears [23] and on page 36 of Chandrasekhar [19]. It must be 
emphasized that any realistic pair of equations of state P(v ,  T )  and I(v, T )  must obey this 
consistency condition in order to obtain physically meaningful results. 

Now consider the combined first and second laws of thermodynamics for an isentropic 
(reversible adiabatic) process, 

T ds = 0 = d19 + Pdv, = C, dT8 + [(g),+'] d v S 7  
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where s is the specific entropy. The subscript s on the differentials indicates that they are 
constrained to lie on an isentrope in the ( v , T )  plane. Collecting terms, we have 

-ev- dT3 = p2cll (%) dT = PTC, (r3 - 1) = ( : i ) T + P = T ( g )  - =- T P .  (53) 
dv3 8 ll tc 

The most convenient of those equalities for evaluation of r 3  will depend on which thermo- 
dynamic derivatives are most readily available in the program. 

In order to evaluate r2, we shall reconsider the previous analysis but with P and T 
taken as the independent variables, so the equations of state are v( P, T )  and I (  P, T ) .  The 
combined first and second laws of thermodynamics for an isentropic process becomes 

Rearranging terms, we obtain 

This reduces correctly to y/(y - 1) for an ideal gas. We note that the thermodynamic 
derivative (dI/dP)T may be converted into other thermodynamic derivatives using various 
relationships that are easily derived or found in standard thermodynamics texts. The third 
adiabatic exponent l?l may be evaluated from the other two using equation 48. 

An alternative formula for computing rl is trivially obtained by noting that the 
square of the isentropic sound speed is given by 

Again, this form may be more useful than equations 53 or 55, depending on which thermo- 
dynamic quantities are most readily available. 

6 The Buoyancy Creation Term 

The buoyancy creation term in the turbulence kinetic energy transport equation 20 has been 
ignored in most published turbulence models because the emphasis has been on shear flows. 
This term has not been as thoroughly studied as some other aspects of turbulence modeling, 
and there are some open questions about how to model it. To the best of my knowledge, 
the earliest published example of an algebraic model for the buoyancy creation term is in 
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the one-equation model of Rivard, Butler, and Farmer [24]. This model uses a non-mass- 
weighted ensemble average of the compressible multicomponent Navier-Stokes equations, and 
the form of the buoyancy source term follows directly from the governing equations by using 
the gradient-flux approximation to the density-velocity correlation. Cloutman [25] extended 
the model to properly account for the Ledoux criterion for turbulent convection in a study 
of overshooting from the convective cores of massive stars. This extension was done on an 
essentially ad hoc basis using a nonmathematical physical argument. 

The stability result from section 4.3 suggests that the closure approximation for the 
buoyancy creation rate of turbulence kinetic energy K: for compressible fluids should be [25, 

261 

Pt [ rlP -1 - 
95 = p tB+  . . .  = -cg- Pt [vp-(vp),].vP+ . . .  = -cg- V p - L V P  . V P + . . .  , 
at P P - - 

(57) 
where CB is a constant that we take to be 1.4. 

In most formulations of closure for the buoyancy source term, the adiabatic gradient 
term is omitted. This is an egregious error since it affects the local rate of entropy pro- 
duction, up to and including getting the sign wrong. The adiabatic term tends to make 
the production rate somewhat smaller in magnitude in buoyantly unstable regions while 
spreading the driving force over a larger region of space. 

As this source term is written, it drives turbulence when the fluid is unstable according 
to the Ledoux criterion (which also includes the Rayleigh-Taylor unstable case as an extreme 
limit) and damps turbulence in a stable case. It may be argued that this term should not 
provide damping in stable cases, but should be set to zero [25]. The conventional wisdom 
is that when this term predicts damping of the turbulence, what happens physically is that 
the buoyant blobs undergo oscillatory motion rather than monotonically accelerated motion. 
The existing kinetic energy is no longer affected by buoyancy forces and is dissipated only 
by viscosity. However, in the Richtmyer-Meshkov instability, turbulence grows regardless of 
the sign of this term, suggesting that under some conditions the absolute value of it should 
be used. Clearly, the present closure models may need to be supplemented to account 
for shock waves or other impulsive accelerations, and taking the absolute value seems to 
be inappropriate for most problems. Preliminary indications from a very limited set of 
calculations are that the best comparison with experiments is obtained when we “rectify” B. 
That is, we calculate B from equation 57, but set it to zero if the value is negative. However, 
this conclusion is tentative, and this question requires additional validation studies for its 
resolution. Turbulent plumes are a good possibility as the buoyancy effects are important 
and there is a large body of experimental data available. 
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7 A Modified Smagorinsky Model 

The transport equation 20 for the turbulence kinetic energy can be solved only after suitable 
closure approximations have been made. This has been done [26, 271 using the usual filter 
function approach to large eddy simulation and the Schumann subgrid-scale approach [21]. 
The Smagorinsky model for the eddy viscosity [28, 291 may be recovered from the modeled K 
equation in the limit of steady homogeneous turbulence in which compression effects (that is, 
the divergence of the mean flow velocity) and buoyancy effects are negligible. The surviving 
terms have shear creation in balance with viscous dissipation. Under these conditions the 
turbulence transport equation simplifies to 

Ot P K 3 I 2  = [Vn+  (Va))'] : vii kS2. 
L 

The term on the left is the viscous decay rate of K ,  Dt is a model constant of order unity, 
and L is the turbulence length scale. We can use the additional closure assumption 

pt = AtPLK'l2 (59) 

to eliminate K, with the result that 
112 

pt = (2) p L 2 { v a :  [Vii+(Vii)T]}1/2. 

Remembering that Smagorinsky used L = the grid spacing A, we see that we recover the 
familiar Smagorinsky model with the model constant 

Since C, M 0.2 for L = A, and this value is known to within a factor of two or so, equation 61 
provides a loose constraint on compatible values of At and Dt in the transport model. 

C. E. Leith (private communication, c. 1991) suggested using a similar argument to 
extend the Smagorinsky model to include buoyancy creation and a compressive eddy work 
term. The simplified transport equation 58 picks up the buoyancy creation term ptL3 on the 
right hand side. This B should include rectification or any other modifications to 
formula. Then including the buoyancy creation term in the eddy viscosity means 
S2 in equation 58 with S2 + B. Then we find 

pt = c:f?L2 { [s2 + 8 + (qdv * n)2]112 - qdV U} . 

the basic 
replacing 

(62) 

with qd = 0. The terms proportional to qd are additional empirical terms introduced by 
Leith to allow the Smagorinsky viscosity also to play the role of an artificial viscosity for 
shock waves. Leith suggests values of CB M 1.43, Cs 0.2, and r]d M 10. The parameter 
q d  should be set to zero for low Mach number flows. These parameter values should be 
considered tentative. 
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8 Conclusions 

The present model addresses only a few of many issues that must be resolved in developing 
a truly predictive model of compressible turbulent flows. In the present study, we used 
simple kinematic models to justify adding pressure gradient terms to the turbulent heat flux 
and to the buoyancy creation of turbulence kinetic energy. These terms are not obvious 
from superficial examination of the governing equations. These modifications have several 
implications. 

0 The pressure gradient term in the turbulent heat flux arises from PdV work. Since 
no analog of that term appears in the species continuity equations, no analog appears 
in the species turbulent diffusion fluxes at this level of approximation. Any counter- 
gradient term in those fluxes must arise somewhere else, and the present study does 
not rule these out. 

0 The buoyancy creation term must also have the adiabatic term, as must the often-used 
V P  - V p  criterion for stability. Failure to include this term may result in nonphysical 
flow predictions as a result of violating the second law of thermodynamics. 

0 When buoyancy effects are present, the original Smagorinsky model must be modified 
to include them, as suggested in section 7. 

0 As shown by Deardorff, there is reason to believe that there are additional terms 
missing from the present closure models, and further research is needed. 
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